Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Applying Large Language Models and Chain-of-Thought for Automatic Scoring (2312.03748v2)

Published 30 Nov 2023 in cs.CL and cs.AI

Abstract: This study investigates the application of LLMs, specifically GPT-3.5 and GPT-4, with Chain-of-Though (CoT) in the automatic scoring of student-written responses to science assessments. We focused on overcoming the challenges of accessibility, technical complexity, and lack of explainability that have previously limited the use of artificial intelligence-based automatic scoring tools among researchers and educators. With a testing dataset comprising six assessment tasks (three binomial and three trinomial) with 1,650 student responses, we employed six prompt engineering strategies to automatically score student responses. The six strategies combined zero-shot or few-shot learning with CoT, either alone or alongside item stem and scoring rubrics. Results indicated that few-shot (acc = .67) outperformed zero-shot learning (acc = .60), with 12.6% increase. CoT, when used without item stem and scoring rubrics, did not significantly affect scoring accuracy (acc = .60). However, CoT prompting paired with contextual item stems and rubrics proved to be a significant contributor to scoring accuracy (13.44% increase for zero-shot; 3.7% increase for few-shot). We found a more balanced accuracy across different proficiency categories when CoT was used with a scoring rubric, highlighting the importance of domain-specific reasoning in enhancing the effectiveness of LLMs in scoring tasks. We also found that GPT-4 demonstrated superior performance over GPT -3.5 in various scoring tasks when combined with the single-call greedy sampling or ensemble voting nucleus sampling strategy, showing 8.64% difference. Particularly, the single-call greedy sampling strategy with GPT-4 outperformed other approaches.

Introduction

The implementation of artificial intelligence in the education sector is transforming the ways in which teachers assess student learning. Automatic scoring systems, particularly within the field of science education, have gained traction as they provide immediate feedback to students, thereby significantly enhancing the learning environment. Though the potential of AI systems is clear, their adoption has been hindered by challenges such as accessibility, technical complexity, and a lack of transparency in how such systems reach their conclusions. Within this context, this research explores the application of LLMs - specifically, the capabilities of GPT-3.5 and GPT-4 - in conjunction with Chain-of-Thought (CoT) prompting to address these challenges.

Literature Review and Background

Automatic scoring of student responses has been largely based on traditional machine learning and natural language processing techniques. These methods demand substantial data collection and manual scoring by experts to train the assessment models. The advent of LLMs like BERT and SciEdBERT brought significant advances, particularly in their natural language understanding capabilities. Leveraging these pre-trained models, researchers have explored various techniques, including prompt engineering, to minimize the need for extensive training data. However, the full potential of LLMs, particularly their ability to provide domain-specific reasoning and transparent outcomes in the context of educational scoring, remains largely unexplored.

Methodology

In a novel approach, researchers crafted various prompt engineering strategies that combined zero-shot or few-shot learning with CoT prompts to facilitate domain-specific reasoning in LLMs. To test the efficacy of these strategies, a dataset comprising 1,650 student responses to science assessment tasks was employed. The paper introduces a systematic approach - Prompt Engineering for Automatic Scoring (PPEAS) - which refines the prompt generation process iteratively, integrating expertise feedback and validation. The performance between LLMs was compared under different conditions, framing the question of which models and strategies yield the best-scoring accuracy.

Findings and Implications

The paper found that few-shot learning consistently outperformed zero-shot learning, with CoT prompting when paired with rich contextual instructions and scoring rubrics significantly improving scoring accuracy. Moreover, GPT-4 exhibited superior performance over GPT-3.5. Interestingly, using a single-call strategy with GPT-4 was more effective than ensemble voting strategies, hinting at the enhanced reasoning capacity of the former. The research underscores how CoT, particularly when detailed with contextual cues, elevates the scoring precision of LLMs.

In conclusion, the integration of LLMs and CoT within automatic scoring demonstrates the potential of these models to render precise, timely, and transparent assessments. The enhanced accuracy and the propensity of the LLMs to provide domain-specific reasoning while generating interpretable scores holds promise not only for research but also for practical applications in educational settings. Thus, the adoption of LLMs could spur significant advancements in the field of education, rendering sophisticated AI tools both accessible and comprehensible for educators and learners alike.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleEducation in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning Education in the era of generative artificial intelligence (ai): Understanding the potential benefits of chatgpt in promoting teaching and learning.\BBCQ \APACjournalVolNumPagesAvailable at SSRN 4337484, \PrintBackRefs\CurrentBib Besta \BOthers. [\APACyear2023] \APACinsertmetastarbesta2023graph{APACrefauthors}Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Gianinazzi, L., Gajda, J.\BDBLothers  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGraph of thoughts: Solving elaborate problems with large language models Graph of thoughts: Solving elaborate problems with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.09687, \PrintBackRefs\CurrentBib Bewersdorff \BOthers. [\APACyear2023] \APACinsertmetastarbewersdorff2023assessing{APACrefauthors}Bewersdorff, A., Seßler, K., Baur, A., Kasneci, E.\BCBL Nerdel, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleAssessing student errors in experimentation using artificial intelligence and large language models: A comparative study with human raters Assessing student errors in experimentation using artificial intelligence and large language models: A comparative study with human raters.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence5100177, \PrintBackRefs\CurrentBib Bi \BOthers. [\APACyear2023] \APACinsertmetastarbi2023program{APACrefauthors}Bi, Z., Zhang, N., Jiang, Y., Deng, S., Zheng, G.\BCBL Chen, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleWhen Do Program-of-Thoughts Work for Reasoning? When do program-of-thoughts work for reasoning?\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.15452, \PrintBackRefs\CurrentBib Chen \BOthers. [\APACyear2023] \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarbesta2023graph{APACrefauthors}Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Gianinazzi, L., Gajda, J.\BDBLothers  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGraph of thoughts: Solving elaborate problems with large language models Graph of thoughts: Solving elaborate problems with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.09687, \PrintBackRefs\CurrentBib Bewersdorff \BOthers. [\APACyear2023] \APACinsertmetastarbewersdorff2023assessing{APACrefauthors}Bewersdorff, A., Seßler, K., Baur, A., Kasneci, E.\BCBL Nerdel, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleAssessing student errors in experimentation using artificial intelligence and large language models: A comparative study with human raters Assessing student errors in experimentation using artificial intelligence and large language models: A comparative study with human raters.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence5100177, \PrintBackRefs\CurrentBib Bi \BOthers. [\APACyear2023] \APACinsertmetastarbi2023program{APACrefauthors}Bi, Z., Zhang, N., Jiang, Y., Deng, S., Zheng, G.\BCBL Chen, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleWhen Do Program-of-Thoughts Work for Reasoning? When do program-of-thoughts work for reasoning?\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.15452, \PrintBackRefs\CurrentBib Chen \BOthers. [\APACyear2023] \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarbewersdorff2023assessing{APACrefauthors}Bewersdorff, A., Seßler, K., Baur, A., Kasneci, E.\BCBL Nerdel, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleAssessing student errors in experimentation using artificial intelligence and large language models: A comparative study with human raters Assessing student errors in experimentation using artificial intelligence and large language models: A comparative study with human raters.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence5100177, \PrintBackRefs\CurrentBib Bi \BOthers. [\APACyear2023] \APACinsertmetastarbi2023program{APACrefauthors}Bi, Z., Zhang, N., Jiang, Y., Deng, S., Zheng, G.\BCBL Chen, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleWhen Do Program-of-Thoughts Work for Reasoning? When do program-of-thoughts work for reasoning?\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.15452, \PrintBackRefs\CurrentBib Chen \BOthers. [\APACyear2023] \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarbi2023program{APACrefauthors}Bi, Z., Zhang, N., Jiang, Y., Deng, S., Zheng, G.\BCBL Chen, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleWhen Do Program-of-Thoughts Work for Reasoning? When do program-of-thoughts work for reasoning?\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.15452, \PrintBackRefs\CurrentBib Chen \BOthers. [\APACyear2023] \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  2. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGraph of thoughts: Solving elaborate problems with large language models Graph of thoughts: Solving elaborate problems with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.09687, \PrintBackRefs\CurrentBib Bewersdorff \BOthers. [\APACyear2023] \APACinsertmetastarbewersdorff2023assessing{APACrefauthors}Bewersdorff, A., Seßler, K., Baur, A., Kasneci, E.\BCBL Nerdel, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleAssessing student errors in experimentation using artificial intelligence and large language models: A comparative study with human raters Assessing student errors in experimentation using artificial intelligence and large language models: A comparative study with human raters.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence5100177, \PrintBackRefs\CurrentBib Bi \BOthers. [\APACyear2023] \APACinsertmetastarbi2023program{APACrefauthors}Bi, Z., Zhang, N., Jiang, Y., Deng, S., Zheng, G.\BCBL Chen, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleWhen Do Program-of-Thoughts Work for Reasoning? When do program-of-thoughts work for reasoning?\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.15452, \PrintBackRefs\CurrentBib Chen \BOthers. [\APACyear2023] \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarbewersdorff2023assessing{APACrefauthors}Bewersdorff, A., Seßler, K., Baur, A., Kasneci, E.\BCBL Nerdel, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleAssessing student errors in experimentation using artificial intelligence and large language models: A comparative study with human raters Assessing student errors in experimentation using artificial intelligence and large language models: A comparative study with human raters.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence5100177, \PrintBackRefs\CurrentBib Bi \BOthers. [\APACyear2023] \APACinsertmetastarbi2023program{APACrefauthors}Bi, Z., Zhang, N., Jiang, Y., Deng, S., Zheng, G.\BCBL Chen, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleWhen Do Program-of-Thoughts Work for Reasoning? When do program-of-thoughts work for reasoning?\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.15452, \PrintBackRefs\CurrentBib Chen \BOthers. [\APACyear2023] \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarbi2023program{APACrefauthors}Bi, Z., Zhang, N., Jiang, Y., Deng, S., Zheng, G.\BCBL Chen, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleWhen Do Program-of-Thoughts Work for Reasoning? When do program-of-thoughts work for reasoning?\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.15452, \PrintBackRefs\CurrentBib Chen \BOthers. [\APACyear2023] \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  3. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleAssessing student errors in experimentation using artificial intelligence and large language models: A comparative study with human raters Assessing student errors in experimentation using artificial intelligence and large language models: A comparative study with human raters.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence5100177, \PrintBackRefs\CurrentBib Bi \BOthers. [\APACyear2023] \APACinsertmetastarbi2023program{APACrefauthors}Bi, Z., Zhang, N., Jiang, Y., Deng, S., Zheng, G.\BCBL Chen, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleWhen Do Program-of-Thoughts Work for Reasoning? When do program-of-thoughts work for reasoning?\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.15452, \PrintBackRefs\CurrentBib Chen \BOthers. [\APACyear2023] \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarbi2023program{APACrefauthors}Bi, Z., Zhang, N., Jiang, Y., Deng, S., Zheng, G.\BCBL Chen, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleWhen Do Program-of-Thoughts Work for Reasoning? When do program-of-thoughts work for reasoning?\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.15452, \PrintBackRefs\CurrentBib Chen \BOthers. [\APACyear2023] \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  4. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleWhen Do Program-of-Thoughts Work for Reasoning? When do program-of-thoughts work for reasoning?\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2308.15452, \PrintBackRefs\CurrentBib Chen \BOthers. [\APACyear2023] \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarchen2023see{APACrefauthors}Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Zhang, H.\BCBL Gan, C.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  5. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleSee, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning See, think, confirm: Interactive prompting between vision and language models for knowledge-based visual reasoning.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.05226, \PrintBackRefs\CurrentBib Cheng \BOthers. [\APACyear2022] \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarcheng2022binding{APACrefauthors}Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  6. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleBinding Language Models in Symbolic Languages Binding language models in symbolic languages.\BBCQ \APACrefbtitleThe Eleventh International Conference on Learning Representations. The eleventh international conference on learning representations. \PrintBackRefs\CurrentBib Cozma \BOthers. [\APACyear2018] \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarcozma2018automated{APACrefauthors}Cozma, M., Butnaru, A.M.\BCBL Ionescu, R.T.  \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  7. \APACrefYearMonthDay2018. \APACrefbtitleAutomated essay scoring with string kernels and word embeddings. Automated essay scoring with string kernels and word embeddings. \PrintBackRefs\CurrentBib Devlin \BOthers. [\APACyear2018] \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardevlin2018bert{APACrefauthors}Devlin, J., Chang, M\BHBIW., Lee, K.\BCBL Toutanova, K.  \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  8. \APACrefYearMonthDay2018. \BBOQ\APACrefatitleBert: Pre-training of deep bidirectional transformers for language understanding Bert: Pre-training of deep bidirectional transformers for language understanding.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1810.04805, \PrintBackRefs\CurrentBib Du \BOthers. [\APACyear2019] \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastardu2019techniques{APACrefauthors}Du, M., Liu, N.\BCBL Hu, X.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  9. \APACrefYearMonthDay2019. \BBOQ\APACrefatitleTechniques for interpretable machine learning Techniques for interpretable machine learning.\BBCQ \APACjournalVolNumPagesCommunications of the ACM63168–77, \PrintBackRefs\CurrentBib Fang \BOthers. [\APACyear2023] \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarFang3439{APACrefauthors}Fang, L., Lee, G\BHBIG.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  10. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing Gpt-4 to Augment Unbalanced Data for Automatic Scoring Using gpt-4 to augment unbalanced data for automatic scoring\BBCQ [Journal Article]. \APACjournalVolNumPagesarXiv preprint: 2310.18365v1, {APACrefDOI} https://doi.org/10.48550/arXiv.2310.18365 \PrintBackRefs\CurrentBib Fu \BOthers. [\APACyear2021] \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarfu2021theoretical{APACrefauthors}Fu, Z., Lam, W., So, A.M\BHBIC.\BCBL Shi, B.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  11. \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA theoretical analysis of the repetition problem in text generation A theoretical analysis of the repetition problem in text generation.\BBCQ \APACrefbtitleProceedings of the AAAI Conference on Artificial Intelligence Proceedings of the aaai conference on artificial intelligence (\BVOL 35, \BPGS 12848–12856). \PrintBackRefs\CurrentBib Haller \BOthers. [\APACyear2022] \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhaller2022survey{APACrefauthors}Haller, S., Aldea, A., Seifert, C.\BCBL Strisciuglio, N.  \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  12. \APACrefYearMonthDay2022. \APACrefbtitleSurvey on Automated Short Answer Grading with Deep Learning: from Word Embeddings to Transformers. Survey on automated short answer grading with deep learning: from word embeddings to transformers. \PrintBackRefs\CurrentBib Hewitt \BOthers. [\APACyear2022] \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarhewitt2022truncation{APACrefauthors}Hewitt, J., Manning, C.D.\BCBL Liang, P.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  13. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleTruncation sampling as language model desmoothing Truncation sampling as language model desmoothing.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15191, \PrintBackRefs\CurrentBib Holtzman \BOthers. [\APACyear2019] \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholtzman2019curious{APACrefauthors}Holtzman, A., Buys, J., Du, L., Forbes, M.\BCBL Choi, Y.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  14. \APACrefYearMonthDay2019. \BBOQ\APACrefatitleThe Curious Case of Neural Text Degeneration The curious case of neural text degeneration.\BBCQ \APACrefbtitleInternational Conference on Learning Representations. International conference on learning representations. \PrintBackRefs\CurrentBib Holzinger \BOthers. [\APACyear2022] \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarholzinger2022explainable{APACrefauthors}Holzinger, A., Saranti, A., Molnar, C., Biecek, P.\BCBL Samek, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  15. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable AI Methods - A Brief Overview Explainable ai methods - a brief overview.\BBCQ A. Holzinger, R. Goebel, R. Fong, T. Moon, K\BHBIR. Müller\BCBL \BBA W. Samek (\BEDS), \APACrefbtitlexxAI - Beyond Explainable AI xxai - beyond explainable ai (\BVOL 13200). \APACaddressPublisherSpringer, Cham. \PrintBackRefs\CurrentBib Imani \BOthers. [\APACyear2023] \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarimani2023mathprompter{APACrefauthors}Imani, S., Du, L.\BCBL Shrivastava, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  16. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMathprompter: Mathematical reasoning using large language models Mathprompter: Mathematical reasoning using large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.05398, \PrintBackRefs\CurrentBib Jung \BOthers. [\APACyear2022] \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarjung2022maieutic{APACrefauthors}Jung, J., Qin, L., Welleck, S., Brahman, F., Bhagavatula, C., Le Bras, R.\BCBL Choi, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  17. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleMaieutic Prompting: Logically Consistent Reasoning with Recursive Explanations Maieutic prompting: Logically consistent reasoning with recursive explanations.\BBCQ \APACrefbtitleProceedings of the 2022 Conference on Empirical Methods in Natural Language Processing Proceedings of the 2022 conference on empirical methods in natural language processing (\BPGS 1266–1279). \PrintBackRefs\CurrentBib Khosravi \BOthers. [\APACyear2022] \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkhosravi2022explainable{APACrefauthors}Khosravi, H., Buckingham Shum, S., Chen, G., Conati, C., Tsai, Y\BHBIS., Kay, J.\BDBLGašević, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  18. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleExplainable Artificial Intelligence in Education Explainable artificial intelligence in education.\BBCQ \APACjournalVolNumPagesComputers and Education: Artificial Intelligence3100074, {APACrefDOI} https://doi.org/10.1016/j.caeai.2022.100074 \PrintBackRefs\CurrentBib Kojima \BOthers. [\APACyear2022] \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarkojima2022large{APACrefauthors}Kojima, T., Gu, S.S., Reid, M., Matsuo, Y.\BCBL Iwasawa, Y.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  19. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLarge language models are zero-shot reasoners Large language models are zero-shot reasoners.\BBCQ \APACjournalVolNumPagesAdvances in neural information processing systems3522199–22213, \PrintBackRefs\CurrentBib Latif \BOthers. [\APACyear\bibnodate] \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2304artificial{APACrefauthors}Latif, E., Mai, G., Nyaaba, M., Wu, X., Liu, N., Lu, G.\BDBLZhai, X.  \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  20. \APACrefYearMonthDay\bibnodate. \BBOQ\APACrefatitleArtificial general intelligence (AGI) for education. arXiv 2023 Artificial general intelligence (agi) for education. arxiv 2023.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2304.12479, \PrintBackRefs\CurrentBib Latif \BBA Zhai [\APACyear2023] \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlatif2023fine{APACrefauthors}Latif, E.\BCBT \BBA Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  21. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFine-tuning ChatGPT for Automatic Scoring Fine-tuning chatgpt for automatic scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2310.10072, \PrintBackRefs\CurrentBib Leacock \BBA Chodorow [\APACyear2003] \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarleacock2003c{APACrefauthors}Leacock, C.\BCBT \BBA Chodorow, M.  \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  22. \APACrefYearMonthDay2003. \BBOQ\APACrefatitleC-rater: Automated scoring of short-answer questions C-rater: Automated scoring of short-answer questions.\BBCQ \APACjournalVolNumPagesComputers and the Humanities37389–405, \PrintBackRefs\CurrentBib Lee \BOthers. [\APACyear2023] \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarlee2023few{APACrefauthors}Lee, U., Jung, H., Jeon, Y., Sohn, Y., Hwang, W., Moon, J.\BCBL Kim, H.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  23. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleFew-shot is enough: exploring ChatGPT prompt engineering method for automatic question generation in english education Few-shot is enough: exploring chatgpt prompt engineering method for automatic question generation in english education.\BBCQ \APACjournalVolNumPagesEducation and Information Technologies1–33, \PrintBackRefs\CurrentBib Li \BOthers. [\APACyear2022] \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarli2022contrastive{APACrefauthors}Li, X.L., Holtzman, A., Fried, D., Liang, P., Eisner, J., Hashimoto, T.\BDBLLewis, M.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  24. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleContrastive decoding: Open-ended text generation as optimization Contrastive decoding: Open-ended text generation as optimization.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2210.15097, \PrintBackRefs\CurrentBib P. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023pre{APACrefauthors}Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H.\BCBL Neubig, G.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  25. \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing.\BBCQ \APACjournalVolNumPagesACM Computing Surveys5591–35, \PrintBackRefs\CurrentBib Z. Liu \BOthers. [\APACyear2023] \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarliu2023context{APACrefauthors}Liu, Z., He, X., Liu, L., Liu, T.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  26. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleContext matters: A strategy to pre-train language model for science education Context matters: A strategy to pre-train language model for science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.12031, \PrintBackRefs\CurrentBib Meister \BOthers. [\APACyear2023] \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarmeister2023locally{APACrefauthors}Meister, C., Pimentel, T., Wiher, G.\BCBL Cotterell, R.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  27. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleLocally typical sampling Locally typical sampling.\BBCQ \APACjournalVolNumPagesTransactions of the Association for Computational Linguistics11102–121, \PrintBackRefs\CurrentBib Nehm \BOthers. [\APACyear2012] \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarnehm2012transforming{APACrefauthors}Nehm, R.H., Ha, M.\BCBL Mayfield, E.  \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  28. \APACrefYearMonthDay2012. \BBOQ\APACrefatitleTransforming biology assessment with machine learning: automated scoring of written evolutionary explanations Transforming biology assessment with machine learning: automated scoring of written evolutionary explanations.\BBCQ \APACjournalVolNumPagesJournal of Science Education and Technology21183–196, \PrintBackRefs\CurrentBib OpenAI [\APACyear2023] \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  29. \APACinsertmetastaropenai2023gpt4{APACrefauthors}OpenAI  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleGPT-4 Technical Report Gpt-4 technical report.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.08774, \PrintBackRefs\CurrentBib Organisciak \BOthers. [\APACyear2023] \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarorganisciak2023beyond{APACrefauthors}Organisciak, P., Acar, S., Dumas, D.\BCBL Berthiaume, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  30. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleBeyond semantic distance: automated scoring of divergent thinking greatly improves with large language models Beyond semantic distance: automated scoring of divergent thinking greatly improves with large language models.\BBCQ \APACjournalVolNumPagesThinking Skills and Creativity101356, \PrintBackRefs\CurrentBib Rahman \BBA Watanobe [\APACyear2023] \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrahman2023chatgpt{APACrefauthors}Rahman, M.M.\BCBT \BBA Watanobe, Y.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  31. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT for education and research: Opportunities, threats, and strategies Chatgpt for education and research: Opportunities, threats, and strategies.\BBCQ \APACjournalVolNumPagesApplied Sciences1395783, \PrintBackRefs\CurrentBib Ramesh \BBA Sanampudi [\APACyear2022] \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarramesh2022automated{APACrefauthors}Ramesh, D.\BCBT \BBA Sanampudi, S.K.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  32. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAn Automated Essay Scoring Systems: A Systematic Literature Review An automated essay scoring systems: A systematic literature review.\BBCQ \APACjournalVolNumPagesArtificial Intelligence Review5532495–2527, {APACrefDOI} https://doi.org/10.1007/s10462-021-10068-2 \PrintBackRefs\CurrentBib Rodriguez \BOthers. [\APACyear2019] \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrodriguez2019language{APACrefauthors}Rodriguez, P.U., Jafari, A.\BCBL Ormerod, C.M.  \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  33. \APACrefYearMonthDay2019. \BBOQ\APACrefatitleLanguage models and automated essay scoring Language models and automated essay scoring.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:1909.09482, \PrintBackRefs\CurrentBib Rudolph \BOthers. [\APACyear2023] \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarrudolph2023chatgpt{APACrefauthors}Rudolph, J., Tan, S.\BCBL Tan, S.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  34. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Chatgpt: Bullshit spewer or the end of traditional assessments in higher education?\BBCQ \APACjournalVolNumPagesJournal of Applied Learning and Teaching61, \PrintBackRefs\CurrentBib Selva Birunda \BBA Kanniga Devi [\APACyear2021] \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarselva2021review{APACrefauthors}Selva Birunda, S.\BCBT \BBA Kanniga Devi, R.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  35. \APACrefYearMonthDay2021. \BBOQ\APACrefatitleA Review on Word Embedding Techniques for Text Classification A review on word embedding techniques for text classification.\BBCQ \APACrefbtitleLecture Notes on Data Engineering and Communications Technologies Lecture notes on data engineering and communications technologies (\BVOL 59). {APACrefURL} https://doi.org/10.1007/978-981-15-9651-3_23 \PrintBackRefs\CurrentBib Shen \BOthers. [\APACyear2021] \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarshen2021mathbert{APACrefauthors}Shen, J.T., Yamashita, M., Prihar, E., Heffernan, N., Wu, X., Graff, B.\BCBL Lee, D.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  36. \APACrefYearMonthDay2021. \BBOQ\APACrefatitleMathbert: A pre-trained language model for general nlp tasks in mathematics education Mathbert: A pre-trained language model for general nlp tasks in mathematics education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2106.07340, \PrintBackRefs\CurrentBib Su \BOthers. [\APACyear2022] \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarsu2022contrastive{APACrefauthors}Su, Y., Lan, T., Wang, Y., Yogatama, D., Kong, L.\BCBL Collier, N.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  37. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleA contrastive framework for neural text generation A contrastive framework for neural text generation.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3521548–21561, \PrintBackRefs\CurrentBib Wang \BOthers. [\APACyear2022] \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwang2022self{APACrefauthors}Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S.\BDBLZhou, D.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  38. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleSelf-consistency improves chain of thought reasoning in language models Self-consistency improves chain of thought reasoning in language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2203.11171, \PrintBackRefs\CurrentBib Wei \BOthers. [\APACyear2022] \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwei2022chain{APACrefauthors}Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  39. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleChain-of-thought prompting elicits reasoning in large language models Chain-of-thought prompting elicits reasoning in large language models.\BBCQ \APACjournalVolNumPagesAdvances in Neural Information Processing Systems3524824–24837, \PrintBackRefs\CurrentBib Wilson \BOthers. [\APACyear2023] \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwilson2023using{APACrefauthors}Wilson, C.D., Haudek, K.C., Osborne, J.F., Buck Bracey, Z.E., Cheuk, T., Donovan, B.M.\BDBLZhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  40. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleUsing automated analysis to assess middle school students’ competence with scientific argumentation Using automated analysis to assess middle school students’ competence with scientific argumentation.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching, \PrintBackRefs\CurrentBib Wu \BOthers. [\APACyear2023] \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarwu2023matching{APACrefauthors}Wu, X., He, X., Li, T., Liu, N.\BCBL Zhai, X.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  41. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleMatching Exemplar as Next Sentence Prediction (MeNSP): Zero-shot Prompt Learning for Automatic Scoring in Science Education Matching exemplar as next sentence prediction (mensp): Zero-shot prompt learning for automatic scoring in science education.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2301.08771, \PrintBackRefs\CurrentBib Yan \BOthers. [\APACyear2023] \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryan2023practical{APACrefauthors}Yan, L., Sha, L., Zhao, L., Li, Y., Martinez-Maldonado, R., Chen, G.\BDBLGašević, D.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  42. \APACrefYearMonthDay2023. \BBOQ\APACrefatitlePractical and ethical challenges of large language models in education: A systematic literature review Practical and ethical challenges of large language models in education: A systematic literature review.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2303.13379, \PrintBackRefs\CurrentBib Yao \BOthers. [\APACyear2023] \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastaryao2023tree{APACrefauthors}Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T.L., Cao, Y.\BCBL Narasimhan, K.  \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  43. \APACrefYearMonthDay2023. \BBOQ\APACrefatitleTree of thoughts: Deliberate problem solving with large language models Tree of thoughts: Deliberate problem solving with large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2305.10601, \PrintBackRefs\CurrentBib Zhai [\APACyear2021] \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  44. \APACinsertmetastarzhai2021advancing{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2021. \BBOQ\APACrefatitleAdvancing automatic guidance in virtual science inquiry: from ease of use to personalization Advancing automatic guidance in virtual science inquiry: from ease of use to personalization.\BBCQ \APACjournalVolNumPagesEducational Technology Research and Development691255–258, \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt1] \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  45. \APACinsertmetastarzhai2023chatgpt{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt1. \BBOQ\APACrefatitleChatGPT and AI: The Game Changer for Education Chatgpt and ai: The game changer for education.\BBCQ \APACjournalVolNumPagesXRDS: Crossroads, The ACM Magazine for Students1-4, {APACrefDOI} https://doi.org/https://ssrn.com/abstract=4389098 \PrintBackRefs\CurrentBib Zhai [\APACyear2023\APACexlab\BCnt2] \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  46. \APACinsertmetastarzhai2023chatgpt1{APACrefauthors}Zhai, X.  \APACrefYearMonthDay2023\BCnt2. \BBOQ\APACrefatitleChatGPT for next generation science learning Chatgpt for next generation science learning.\BBCQ \APACjournalVolNumPagesShanghai Education2942-46, {APACrefDOI} https://doi.org/AvailableatSSRN4331313 \PrintBackRefs\CurrentBib Zhai [\APACyear\BIP] \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  47. \APACinsertmetastarRN3446{APACrefauthors}Zhai, X.  \APACrefYearMonthDay\BIP. \BBOQ\APACrefatitleConclusions and Foresight on AI-based STEM Education: A New Paradigm Conclusions and foresight on ai-based stem education: A new paradigm\BBCQ [Book Section]. \BIn X. Zhai \BBA K. J.S. (\BEDS), \APACrefbtitleUses of Artificial Intelligence in STEM Education. Uses of artificial intelligence in stem education. \APACaddressPublisherUKOxford University Press. \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BBA Ma [\APACyear2022] \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022assessing{APACrefauthors}Zhai, X., Haudek, K.C.\BCBL Ma, W.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  48. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleAssessing Argumentation Using Machine Learning and Cognitive Diagnostic Modeling Assessing argumentation using machine learning and cognitive diagnostic modeling.\BBCQ \APACjournalVolNumPagesResearch in Science Education1–20, \PrintBackRefs\CurrentBib Zhai, Haudek\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2021review{APACrefauthors}Zhai, X., Haudek, K.C., Shi, L., Nehm, R.\BCBL Urban-Lurain, M.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  49. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleFrom substitution to redefinition: A framework of machine learning-based science assessment From substitution to redefinition: A framework of machine learning-based science assessment\BBCQ [Journal Article]. \APACjournalVolNumPagesJournal of Research in Science Teaching5791430-1459, {APACrefDOI} https://doi.org/10.1002/tea.21658 \PrintBackRefs\CurrentBib Zhai, He\BCBL \BBA Krajcik [\APACyear2022] \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhai2022applying{APACrefauthors}Zhai, X., He, P.\BCBL Krajcik, J.  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  50. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleApplying machine learning to automatically assess scientific models Applying machine learning to automatically assess scientific models.\BBCQ \APACjournalVolNumPagesJournal of Research in Science Teaching59101765–1794, \PrintBackRefs\CurrentBib Zhai, Yin\BCBL \BOthers. [\APACyear2020] \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarZhai2020Review{APACrefauthors}Zhai, X., Yin, Y., Pellegrino, J.W., Haudek, K.C.\BCBL Shi, L.  \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  51. \APACrefYearMonthDay2020. \BBOQ\APACrefatitleApplying machine learning in science assessment: a systematic review Applying machine learning in science assessment: a systematic review\BBCQ [Journal Article]. \APACjournalVolNumPagesStudies in Science Education561111-151, \PrintBackRefs\CurrentBib Zhou \BOthers. [\APACyear2022] \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib \APACinsertmetastarzhou2022least{APACrefauthors}Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.\BDBLothers  \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
  52. \APACrefYearMonthDay2022. \BBOQ\APACrefatitleLeast-to-most prompting enables complex reasoning in large language models Least-to-most prompting enables complex reasoning in large language models.\BBCQ \APACjournalVolNumPagesarXiv preprint arXiv:2205.10625, \PrintBackRefs\CurrentBib
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Gyeong-Geon Lee (11 papers)
  2. Ehsan Latif (36 papers)
  3. Xuansheng Wu (21 papers)
  4. Ninghao Liu (98 papers)
  5. Xiaoming Zhai (48 papers)
Citations (54)